Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512976

RESUMO

Mining wastewater with heavy metals poses a serious threat to the ecological environment. However, the acute single and combined ecological effects of heavy metals, such as chromium (Cr) and nickel (Ni), on freshwater ostracods, and the development of relevant prediction models, remain poorly understood. In this study, Heterocypris sp. was chosen to investigate the single and combined acute toxicity of Cr and Ni. Then, the quantitative structure-activity relationship (QSAR) model was used to predict the combined toxicity of Cr and Ni. The single acute toxicity experiments revealed high toxicity for both Cr and Ni. In addition, Cr exhibited greater toxicity compared to Ni, as evidenced by its lower 96-hour half-lethal concentration (LC50) of 1.07 mg/L compared to 4.7 mg/L for Ni. Furthermore, the combined acute toxicity experiments showed that the toxicity of Cr-Ni was higher than Ni but lower than Cr. Compared with the concentration addition (CA) and independent action (IA) models, the predicted results of the QSAR model were more consistent with the experimental results for the Cr-Ni combined acute toxicity. So, the high accuracy of QSAR model identified its feasibility to predict the toxicity of heavy metal pollutants in mining wastewater.


Assuntos
Metais Pesados , Níquel , Animais , Níquel/toxicidade , Níquel/análise , Cromo/toxicidade , Cromo/análise , Relação Quantitativa Estrutura-Atividade , Águas Residuárias/toxicidade , Metais Pesados/toxicidade , Metais Pesados/análise , Crustáceos , Monitoramento Ambiental
2.
J Environ Manage ; 353: 120157, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38295639

RESUMO

Nanoscale zerovalent iron (Fe0)-based materials have been demonstrated to be a effective method for the U(VI) removal. However, limited research has been conducted on the long-term immobilization efficiency and mechanism of Fe0-based materials for U(VI), which are essential for achieving safe handling and disposal of U(VI) on a large scale. In this study, the prepared carboxymethyl cellulose (CMC) and sulfurization dual stabilized Fe0 (CMC-Fe0/FeS) exhibited excellent long-term immobilization performances for U(VI) under both anoxic and oxic conditions, with the immobilization efficiencies were respectively reached over 98.0 % and 94.8 % after 180 days of aging. Most importantly, different from the immobilization mechanisms of the fresh CMC-Fe0/FeS for U(VI) (the adsorption effect of -COOH and -OH groups, coordination effect with sulfur species, as well as reduction effect of Fe0), the re-mobilized U(VI) were finally re-immobilized by the formed FeOOH and Fe3O4 on the aged CMC-Fe0/FeS. Under anoxic conditions, more Fe3O4 was produced, which may be the main reason for the long-term immobilization U(VI). Under oxic conditions, the production of Fe3O4 and FeOOH were relatively high, which both played significant roles in re-immobilizing U(VI) through surface complexation, reduction and incorporation effects.


Assuntos
Urânio , Carboximetilcelulose Sódica , Ferro , Adsorção
3.
J Hazard Mater ; 457: 131641, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329595

RESUMO

Doping uranium into a room-temperature stable Fe3O4 lattice structure effectively reduces its migration. However, the synergistic or competitive effects of coexisting ions in an aqueous solution directly affect the uranium mineralization efficiency and the structural stability of uranium-bearing Fe3O4. The effects of calcium, carbonate, and phosphate on uranium electromineralization were investigated via batch experiments and theoretical calculations. Calcium incorporated into the Fe3O4 lattice increased the level and stability of doped uranium in Fe3O4. Uranium and calcium occupied the octahedral and tetrahedral sites of Fe3O4, respectively; the formation energy was only -10.23 eV due to strong hybridization effects between Fe1s, U4f, O2p, and Ca3d orbitals. Compared to the uranium-doped Fe3O4, uranium leaching ratios decreased by 19.2 % and 48.9 % under strongly acidic and alkaline conditions after 120 days. However, high concentrations of phosphate inhibited Fe3O4 crystallization. These results should provide new avenues for the development of multi-metal co-doping technologies and mineralization optimization to treat uranium-containing complex wastewater.

4.
J Hazard Mater ; 457: 131842, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329600

RESUMO

Efficient degradation of antibiotic by peroxydisulfate (PDS)-based advanced oxidation processes in complex water environment is challenging due to the interference of impurities and the low activation efficiency of PDS caused by its symmetric structure. Herein, a novel Cu7S4/PDS system was developed, which can selectively remove tetracycline hydrochloride (TC) without interference of inorganic ions (e.g., Cl- and HCO3-) and natural organic matter (e.g., humic acid). The results of quenching and probe experiments demonstrated that surface high-valent copper species (Cu(III)), rather than radicals and 1O2, are main active species for TC degradation. Cu(III) can be generated via Cu(I)/O2 and Cu(II)/Cu(I)/PDS systems and the S species on the surface of Cu7S4 promotes the cycle of Cu(II)/Cu(I) and Cu(III)/Cu(II), resulting in continuous generation of Cu(III). In addition, the degradation pathways of TC were proposed based on product analysis and DFT theory calculations. The acute toxicity, developmental toxicity and mutagenicity of treated TC were significantly reduced according to the results of toxicity estimation software tool. This study shows a promising Cu7S4/PDS system for the degradation and detoxication of antibiotic in complex water environment, while also providing a comprehensive understanding of PDS activation by Cu7S4 to generate active Cu(III) species.


Assuntos
Antibacterianos , Cobre , Antibacterianos/toxicidade , Antibacterianos/química , Cobre/toxicidade , Cobre/química , Tetraciclina/toxicidade , Tetraciclina/química , Oxirredução , Água
5.
Bioelectrochemistry ; 151: 108393, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36739701

RESUMO

As an emerging versatile technology for separating uranium from uranium-containing wastewater (UCW), microbial fuel cell (MFC) offers a novel approach to UCW treatment. Its cathode is essential for the treatment of UCW. To thoroughly investigate the efficacy of MFC in treating UCW, investigations were conducted using MFCs with five materials (containing iron sheet (IP), stainless steel mesh (SSM), carbon cloth (CC), carbon brush (CB), and nickel foam (NF)) as cathodes. The results revealed that each MFC system performed differently in terms of carbon source degradation, uranium removal, and electricity production. In terms of carbon source degradation, CB-MFC showed the best performance. The best uranium removal method was NF-MFC, and the best electricity production method was carbon-based cathode MFC. Five MFC systems demonstrated stable performance and consistent difference over five cycles, with CC-MFC outperforming the others. Furthermore, SEM and XPS characterization of the cathode materials before and after the experiment revealed that a significant amount of U(IV) was generated during the uranium removal process, indicating that uranium ions were primarily removed by electrochemical reduction precipitation. This study confirmed that abiotic cathode MFC had a high UCW removal potential and served as a good guideline for obtaining the best cathode for MFC.


Assuntos
Fontes de Energia Bioelétrica , Urânio , Águas Residuárias , Eletricidade , Carbono , Eletrodos , Níquel
6.
J Environ Manage ; 329: 117074, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586325

RESUMO

Resourcization has become a popular research topic for the final disposal of municipal solid waste incineration fly ash (MSWI FA). However, the current research is limited to building material preparation or valuable chloride recovery, which may cause resource waste and secondary pollution. A unique process, heat treatment with the addition of kaolin (KL), was presented to achieve complete resource utilization of MSWI FA. The physical properties of ceramsite could be improved by adding KL, and dioxin removal, heavy metals, and valuable chloride separation could be achieved via sintering at 1150 °C. The separation and purification of dust carried by the flue gas during thermal treatment (secondary fly ash) was achieved via wet separation. A building ceramsite with a compressive strength of 24.8 MPa was obtained, whereas dioxin and heavy metal toxicity were far below the standard limits. Heavy metal content was enriched by 12 times, approximately 59.6%, achieved after secondary fly ash separation and purification. A heavy metal product containing 39.5% Zn, 19.1% Pb, and chloride salt containing 41.8% KCl were obtained. This showed a high potential for the developed process to separate multiple valuable elements from ashes. This novel process will further promote the development and application of harmless and resourceful technologies for MSWI FA.


Assuntos
Dioxinas , Metais Pesados , Eliminação de Resíduos , Resíduos Sólidos/análise , Cinza de Carvão , Incineração , Caulim , Temperatura Alta , Cloretos , Metais Pesados/análise , Carbono , Material Particulado
7.
Water Res ; 225: 119146, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183544

RESUMO

Unlined iron pipe (UIP) is still widely in use in drinking water distribution systems (DWDS), discoloration easily happens after a long-time retention due to iron release, but the influence of initial chlorine on water quality under this condition is not clear. Here, we studied the water quality changes in UIP section reactors under different initial chlorine dosages. Results showed that chlorine could disappeared rapidly within 0.5 h in the UIP. The water with higher initial chlorine (5 mg/L) had higher turbidity in a short time (within 1.5 h), but for a longer retention time (2∼12 h), the highest turbidity was in the iron pipe without initial chlorine. Interestingly, a clear increase in adenosine triphosphate in the UIPs was observed with the increase of initial chlorine, which was in accordance with the results of heterotrophic plate count. Polysaccharide and protein increased with the increase of initial chlorine, which would benefit the formation of a protective layer to inhibit corrosion. This study reflects that during the overnight retention in UIP, raising chlorine would be effective to control discoloration, but chemical and microbiological risks may increase.


Assuntos
Cloro , Água Potável , Qualidade da Água , Ferro , Abastecimento de Água , Corrosão , Trifosfato de Adenosina
8.
J Environ Radioact ; 250: 106909, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35597073

RESUMO

Reduction of the migratory ability of uranium via reduction, co-precipitation or immobilization is a widely used technology for remediation of uranium contaminated groundwater (UCG). However, the re-released uranium due to environmental alterations such as oxidation, acid dissolution, or microbial decomposition limits the long-term effect of UCG remediation. Here, we developed a novel solar-powered electrochemical mineralization (SPEM) system for persistent remediation of UCG under laboratory conditions. The SPEM system incorporates uranium into magnetite crystal to achieve long-term stability of uranium. The effects of photoelectric conversion, subsurface void fraction, groundwater seepage velocity, and electrode configuration on uranium removal were systematically analyzed. The results showed that the remediation system had excellent adaptability to complex water quality and geological conditions, and could remediate large-area contamination. After 12 h of persistent treatment, the system with newly hexagonal two-dimensional electrode configuration (1A6C) reduced uranium concentration by more than 85% in simulated subsurface environment. The mineralized uranium was not re-released within continuous rinsing of treated regions using an acid solution (pH = 3.0), for 370 h. The developed method solely requires metallic iron as a raw material, which has high and long-term efficiency, is eco-friendly, simple, and widely applicable, thus reliable for the remediation of deep UCG.


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Monitoramento de Radiação , Urânio , Poluentes Radioativos da Água , Água Subterrânea/química , Ferro/química , Urânio/análise , Poluentes Radioativos da Água/análise
9.
J Hazard Mater ; 416: 125885, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492823

RESUMO

Iron-based materials have been widely used for treating uranium-containing wastewater. However, the iron-uranium solids originating by treating radioactive water through pollutant transfer methods has become a new uncontrolled source of persistent radioactive pollution. The safe disposal of such hazardous waste is not yet well-resolved. The electrochemical mineralization method was developed to rapidly purify uranium-containing wastewater through lattice doping in magnetite and recover uranium without generating any pollutants. An unexpected isolation of U3O8 from uranium-doped magnetite was discovered through in-situ XRD with a temperature variation from 300 °C to 700 °C. Through HRTEM and DFT calculation, it was confirmed that the destruction of the inverse spinel crystal structure during the gradual transformation of magnetite into γ-Fe2O3 and α-Fe2O3 promoted the migration, aggregation, and isolation of uranium atoms. Uniquely generated U3O8 and Fe2O3 were easily separated and over 80% uranium and 99.5% iron could be recovered. These results demonstrate a new strategy for uranium utilization and the environmentally friendly treatment of uranium-containing wastewater.


Assuntos
Urânio , Poluentes Radioativos da Água , Ferro , Estresse Oxidativo , Águas Residuárias , Poluentes Radioativos da Água/análise
10.
Nanoscale ; 13(22): 10108-10115, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34060572

RESUMO

Developing low-cost electrocatalysts for the nitrate reduction reaction (NO3RR) with superior performance is of great significance for wastewater treatment. Herein, we synthesized bimetal Cu/Fe nanoparticles encased in N-doped carbon nanofibers (Cu/Fe@NCNFs) through simple electrospinning followed by a pyrolysis reduction strategy. Metallic copper is beneficial for reducing nitrate to nitrite, and the existence of Fe is conducive to convert nitrate and nitrite into nitrogen. Additionally, the nitrogen-doped carbon nanofibers also facilitate the adsorption of nitrate, and the continuous and complete fiber structure enhances the stability of the catalyst and prevents the corrosion of the active sites. Therefore, the synergetic effect of bimetal Cu/Fe and N-doped carbon fiber plays a key role in promoting the efficiency of nitrate reduction. The obtained Cu/Fe@NCNF catalyst exhibits a satisfactory nitrate conversion efficiency of 76%, removal capacity of 5686 mg N g-1 Cu/Fe and nitrogen selectivity of 94%.

12.
Chemosphere ; 201: 603-611, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29544215

RESUMO

Bicarbonate, ubiquitous in natural and waste waters is an important factor regulating the rate and efficiency of pollutant separation and transformation. For example, it can form complexes with U(VI) in the aqueous phase and at the solid-water interface. In this work, we investigated the effect of bicarbonate on the aging of nanoscale zero-valent (nZVI) in the context of U(VI) reduction and removal from wastewater. For fresh nZVI, over 99% aqueous uranium was separated in less than 10 min, of which 83% was reduced from U(VI) to U(IV). When nZVI was aged in water, its activity for U(VI) sequestration and reduction was significantly reduced. Batch experiments showed that for nZVI aged in the presence of 10 mM bicarbonate, only 20.3% uranium was reduced to U(IV) after 6 h reactions. Characterizations of the iron nanoparticles with spherical aberration corrected scanning transmission electron microscopy (Cs-STEM) suggest that in fresh nZVI, uranium was concentrated at the nanoparticle center; whereas in nZVI aged in bicarbonate, uranium was largely deposited on the outer surface of the nanoparticles. Furthermore, aged nZVI without bicarbonate contained more lepidocrocite (γ-FeOOH) while aged nZVI in the presence of bicarbonate had more magnetite/maghemite (Fe3O4/γ-Fe2O3). This could be attributed to the formation of carbonate green rust and pH buffer effect of . Primary mechanisms for U(VI) removal with nZVI include reduction, sorption and/or precipitation. Results demonstrate that bicarbonate alter the aging products of nZVI, and reduces the separation efficiency and reduction capability for uranium removal.


Assuntos
Bicarbonatos/química , Ferro/química , Nanopartículas/química , Nitrato de Uranil/análise , Poluentes Radioativos da Água/análise , Compostos Férricos/química , Óxido Ferroso-Férrico/química , Microscopia Eletrônica de Transmissão e Varredura , Oxirredução , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...